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ABSTRACT- This paper explores the Adaptive Market Hypothesis (AMH) across nine MENA-

region markets, as well as, offering an empirical validation of market adaptability. While 

efficient market hypotheses posit constant market efficiency, AMH suggests that market 

efficiency is dynamic; evolving in response to economic shifts, investor learning, and market 

behavior. It employs an analytical framework to daily time-series data spanning 15 years from 

nine MENA-region financial markets, enabling a robust evaluation of market adaptability across 

varying economic cycles. It integrates Markov Switching Models (MSM) to detect regime shifts, 

Momentum Strategies to evaluate trend persistence, and Long Short-Term Memory (LSTM) 

neural networks to forecast price movements and validate market adaptability. The results 

revealed significant evidence of time-varying market efficiency across all nine markets, with 

observable regime-switching behavior detected through Markov Switching Models (MSM). 

These models successfully captured transitions between efficient and inefficient states, 

highlighting periods of volatility and stability that align with AMH predictions. Momentum 

Strategies, particularly the 250-day variant, outperformed the Buy & Hold strategy during 

specific market phases, suggesting exploitable inefficiencies. Furthermore, LSTM models, when 

adjusted for regime states identified by MSM, demonstrated enhanced predictive accuracy, 

capturing nonlinear dynamics and transitions reflective of adaptive market behavior. This paper 

contributes to the adaptive portfolio management, strategic trading, and policy formulation in 

emerging and frontier MENA markets. It introduces a structured, multi-layered analysis of 

market adaptability, empirically validates AMH in underexplored MENA markets, and sets the 

stage for adaptive investment models capable of real-time adjustments. 

Keywords-Adaptive Market Hypothesis, Markov Switching Models, Momentum Strategies, 

LSTM, Market Efficiency, MENA-region Markets, Regime Shifts, Forecasting.
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1. INTRODUCTION 

Financial markets are central to global economic systems, channeling capital through complex 

interactions between investors, institutions, and policymakers. Traditional financial theories 

often assume these markets are efficient, rational, and self-correcting. However, empirical 

anomalies such as the 2008 global financial crisis, the exponential rise of Bitcoin, and the 

GameStop short squeeze challenge this assumption. These events underscore the reality that 

markets are not consistently predictable and suggest that efficiency fluctuates based on 

behavioral and structural dynamics. This evolving nature of market behavior calls for theoretical 

frameworks capable of capturing adaptive mechanisms within financial systems. 

Despite the foundational role of theories such as the Efficient Market Hypothesis (EMH) and the 

Capital Asset Pricing Model (CAPM), persistent market anomalies such as speculative bubbles, 

herding behavior, and momentum effects suggest that these models fall short in explaining real-

world dynamics. The EMH posits that asset prices always reflect all available information, 

implying static market efficiency. However, empirical evidence increasingly shows that market 

efficiency is not constant, but evolves in response to shifts in behavior, competition, and 

macroeconomic forces. This disconnect highlights a critical research gap: most empirical 

validations of the Adaptive Market Hypothesis (AMH) have focused on developed markets and 

short-term periods, while emerging markets particularly in the MENA region remain 

underexplored. Understanding how these markets transition between efficient and inefficient 

states, and whether such transitions can be forecasted, remains a significant unanswered question 

in financial economics. Addressing this gap requires an integrated empirical framework capable 

of capturing temporal shifts in efficiency and the behavioral mechanisms that drive them.  

This research aims to empirically validate the Adaptive Market Hypothesis (AMH) by 

investigating regime shifts and evolving efficiency across nine MENA-region financial markets. 

By integrating Markov Switching Models, momentum strategies, and LSTM neural networks, 

the study constructs a comprehensive framework that models dynamic market behavior. The 

findings are expected to demonstrate that financial markets do not exhibit static efficiency, but 

instead adjust over time in response to behavioral, structural, and informational factors. 

This study contributes to financial literature by offering a structured empirical validation of the 

Adaptive Market Hypothesis (AMH) within the MENA region, an area where market efficiency 

remains insufficiently examined. By applying a combination of Markov Switching Models, 

momentum strategies, and Long Short-Term Memory (LSTM) neural networks, the research 

captures both the cyclical nature of efficiency and the role of behavioral adaptation. The findings 

provide practical insights for investors, analysts, and policymakers seeking to interpret shifting 

market conditions and design strategies responsive to time-varying efficiency. 

 

The remainder of this paper is structured as follows: Section 2 presents the theoretical framework 

and prior research; Section 3 outlines the methodological approach; Section 4 reports the 

empirical results; and Section 5 offers conclusions and recommendations for future research. 
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2. THEORETICAL FRAMEWORK AND PRIOR RESEARCH 

2.1. Evolution of Financial Market Theories 

Over the past century, financial markets have evolved from fragmented, manually operated 

systems to complex, digitized infrastructures where trading is driven by algorithms, real-time 

data, and global connectivity. Earlier market structures were characterized by inefficiencies due 

to limited information access and slower communication. In contrast, modern markets operate 

with unprecedented speed and data integration, reshaping how prices form and how participants 

behave. 

This evolution presents a challenge to static economic theories that assume homogenous agents 

and constant efficiency. Traditional models such as the Efficient Market Hypothesis (EMH) and 

the Capital Asset Pricing Model (CAPM), while foundational, often fall short in explaining 

persistent volatility, irrational investor behavior, and structural breaks. As a result, alternative 

frameworks like the Adaptive Market Hypothesis (AMH) have emerged, offering dynamic and 

behaviorally informed perspectives on how financial markets function. 

2.2. Efficient Market Hypothesis (EMH) 

The EMH, formalized by Eugene Fama in 1970, revolutionized financial economics. It posits 

that financial markets are informationally efficient, meaning that asset prices at any given time 

fully reflect all available information. EMH can be categorized into three forms: 

 Weak-form efficiency: All past trading information, including prices and volume, is 

already reflected in current asset prices. Thus, technical analysis is deemed ineffective. 

 Semi-strong efficiency: All publicly available information is reflected in asset prices, 

making fundamental analysis ineffective. 

 Strong-form efficiency: Asset prices instantly and fully reflect even insider information, 

leaving no opportunity for excess returns through any informational advantage. 

According to EMH, it is impossible to consistently achieve returns exceeding average market 

returns on a risk-adjusted basis, given that all relevant information is already incorporated into 

prices. 

Alongside the development of EMH, the Capital Asset Pricing Model (CAPM) emerged, 

providing a framework for understanding the relationship between expected returns and 

systematic risk. Introduced by Sharpe (1964), Lintner (1965), and Mossin (1966), CAPM asserts 

that an asset's expected return is proportional to its beta, a measure of its sensitivity to market 

movements.  

CAPM complements EMH by offering a quantitative approach to asset pricing under the 

assumption of efficient markets. If markets are efficient, CAPM should theoretically hold, as risk 

is the only driver of returns. Together, EMH and CAPM laid the foundation for modern portfolio 

theory, investment strategy design, and regulatory frameworks. 

However, real-world market behaviors increasingly challenged these theories. If markets are 

fully efficient and asset prices always reflect all available information, why do recurring patterns 
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like bubbles, crashes, and anomalies persist? Such empirical inconsistencies prompted the 

exploration of alternative frameworks that could better accommodate observed phenomena. 

2.3. Empirical Challenges and Market Anomalies 

While EMH offered an elegant theoretical framework, numerous empirical observations began to 

cast doubt on its validity: 

 Momentum Effect: Stocks that performed well in the past tend to continue performing 

well in the short term, directly contradicting EMH’s assertion that past price movements 

have no predictive power (Jegadeesh & Titman, 1993; Asness, Moskowitz, & Pedersen, 

2015). 

 Market Crashes and Bubbles: If markets were perfectly efficient, extreme mispricings 

leading to market crashes wouldn’t exist. The 2008 financial crisis and the 

cryptocurrency boom of the 2010s exposed fundamental inefficiencies (Woolley, 2014). 

 Herding Behavior: Investors often follow the crowd rather than acting rationally, leading 

to speculative bubbles and panic-driven sell-offs (Shleifer & Vishny, 1997). 

 Overreaction and Underreaction: Psychological biases cause investors to overreact to 

news or underreact to important information, creating price momentum (Kahneman & 

Tversky, 1979). 

 High-Frequency Trading (HFT): The rise of algorithmic trading, which exploits fleeting 

inefficiencies, suggests that price adjustments are not instantaneous and often create 

additional volatility (Meng & Li, 2021). 

These empirical challenges implied that the classical depiction of financial markets as perfectly 

efficient, rational, and self-correcting was, at best, an idealization. They opened the door to 

alternative explanations that integrate human behavior, learning, and evolutionary dynamics into 

market analysis. 

2.4. Behavioral Finance and Evolutionary Economics 

As traditional theories like the Efficient Market Hypothesis (EMH) struggled to explain repeated 

market anomalies, Behavioral Finance emerged to offer a new perspective. Unlike classical 

finance, which assumes investors are perfectly rational and that markets are always efficient, 

Behavioral Finance shows that real-world investors often make decisions based on emotions, 

biases, and imperfect reasoning. Research by Kahneman and Tversky (1979), especially their 

work on Prospect Theory, revealed that people are more sensitive to losses than to gains, leading 

them to behave irrationally under risk. 

Common biases such as overconfidence, where investors overestimate their knowledge; loss 

aversion, where they fear losses more than they value gains; anchoring, where they fixate on 

irrelevant information; and herding, where they follow the crowd, all contribute to market 

behavior that cannot be explained by traditional models. Instead of prices always reflecting true 

value, markets often overreact to news, underreact to important information, or sustain 

momentum trends for longer than rational models would predict. 
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Behavioral Finance made it clear that financial markets are frequently inefficient. Prices can 

deviate from intrinsic value for extended periods because of widespread psychological behaviors 

among investors. Events like financial bubbles, sudden crashes, and irrational trading patterns 

are not rare exceptions but natural outcomes of human behavior influencing markets. 

Recognizing these realities created the need for new theories. Scholars and practitioners began to 

look for models that could better describe how markets truly work, focusing on markets as 

evolving, flexible systems rather than perfectly efficient machines. 

2.5. Adaptive Market Hypothesis (AMH) 

In response to the limitations of EMH, Andrew W. Lo (2004, 2005) proposed the Adaptive 

Market Hypothesis (AMH), offering a dynamic, evolutionary perspective on financial markets. 

Drawing heavily on principles from evolutionary biology, AMH conceptualizes markets as 

ecosystems where financial agents behave like species competing for survival and adapting to 

constantly changing environments. Instead of viewing markets as perpetually efficient or 

inefficient, AMH contends that market efficiency is conditional and varies over time depending 

on environmental pressures, competition, adaptation, and the evolving behavior of investors. 

Drawing on Darwinian principles, AMH suggests that: 

 Investors learn and adapt their strategies based on survival, competition, and past 

successes or failures. 

 Different market environments favor different behaviors and strategies, similar to species 

adapting to ecological niches. 

 Financial innovations, economic cycles, crises, and regulatory changes continuously 

reshape market dynamics. 

Unlike EMH, which assumes rationality, AMH incorporates the behavioral realities of loss 

aversion, overconfidence, and herd mentality (Kahneman & Tversky, 1979; Shleifer & Vishny, 

1997), recognizing that inefficiencies persist until arbitrage corrects them, only for new 

inefficiencies to emerge in an ongoing evolutionary cycle. 

Therefore, within the AMH framework, markets may appear efficient during stable periods, but 

they are prone to inefficiency during episodes of rapid change, structural shifts, or financial 

crises. 

However, despite its theoretical appeal, the Adaptive Market Hypothesis has been criticized for 

lacking clear testable predictions and a formal mathematical structure. Unlike the Efficient 

Market Hypothesis, which allows for direct testing using statistical efficiency measures, AMH is 

often viewed as more descriptive than predictive (Campbell, 2008). It does not clearly define 

when or why markets become inefficient, nor does it offer a specific method to measure how 

investors "adapt" over time. As a result, researchers must often rely on additional models such as 

Markov Switching Models, rolling window tests, or time-varying regression techniques to 

capture the dynamic behavior that AMH proposes (Lo, 2012). Moreover, the concept of 

“adaptation” in AMH is somewhat abstract and is usually inferred from observed changes in 

market performance, which raises concerns about how reliably it can be measured. According to 

Chordia et al. (2014), although AMH helps explain why market efficiency may change over 
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time, it requires the use of indirect indicators that may not fully reflect investor learning or 

competitive dynamics. Therefore, most empirical studies on AMH, including this one, adopt 

hybrid approaches that combine traditional econometric tools with behavioral or structural 

insights to test its assumptions more effectively. 

2.6. Market Dynamics and Adaptations 

Markets are complex adaptive systems that do not operate in a uniform or predictable manner. 

Rather than existing in a perpetual state of efficiency, financial markets move through efficiency 

cycles, where inefficiencies create opportunities for excess returns until they are gradually 

arbitraged away. 

A cross-country analysis by Santos, Fávero, Brugni, and Serra (2023) examined how markets 

evolve over time and found that market efficiency follows a cyclical pattern rather than 

remaining constant. Their study revealed that financial markets experience phases of 

inefficiency, where arbitrage opportunities exist, followed by periods of increased efficiency, 

where those opportunities diminish. 

This cyclical nature of market efficiency is influenced by multiple factors, including: 

 Institutional structures and government regulations 

 Economic shocks and financial crises 

 Liquidity and capital flows 

 Technological advancements 

Their research also showed that markets in emerging economies tend to experience prolonged 

inefficiencies compared to developed markets, where efficiency adjusts more rapidly due to 

better infrastructure and transparency. This supports Lo’s (2004) AMH framework, which 

emphasizes that market efficiency is highly context-dependent and varies across different regions 

and asset classes. 

A similar study by Mandacı, Taşkın, and Ergün (2019) examined Borsa Istanbul (BIST) and 

found that market efficiency is not a binary state but fluctuates across different indices and 

investment periods. Using rolling window variance ratio tests and BDS tests, they found that: 

 High liquidity and technological advancements lead to more efficient markets. 

 Financial instability, speculative trading, and economic uncertainty create 

inefficiencies. 

These findings provide further empirical support for AMH by demonstrating that market 

efficiency is conditional and constantly evolving rather than being a permanent feature of 

financial markets.  

2.7. Empirical Evidence Supporting AMH 

The Adaptive Market Hypothesis is backed by a growing body of empirical research that 

confirms market efficiency fluctuates based on external conditions. 

 Urquhart & McGroarty (2016) found that market efficiency is not a fixed state but 

varies across time, particularly during economic downturns. Their study on the FTSE 
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100 and S&P 500 indices revealed that efficiency is higher in stable periods but 

declines in financially unstable environments, supporting AMH’s view that markets 

evolve dynamically. 

 Okorie & Lin (2021) studied the impact of COVID-19 on financial markets, showing 

that efficiency collapsed in the early months of the pandemic but recovered as 

investors adapted their trading behavior. This demonstrates how market efficiency 

responds to external shocks, a key prediction of AMH. 

 Munir et al. (2022) examined South Asian stock markets and found that market 

anomalies, such as contrarian effects, exist during heightened uncertainty, further 

supporting AMH’s claim that markets transition between efficient and inefficient 

states depending on prevailing conditions. 

But if efficiency changes, how do we model these fluctuations? Markov Chains provide an 

answer. 

2.8. Markov Chains 

Markets constantly transition between different states, making it essential to use models that can 

capture these non-linear shifts. A Markov Chain is a probabilistic system in which the likelihood 

of moving from one state to another depends solely on the current state, without regard to the 

sequence of past events. This property of "memorylessness" makes Markov Chains highly 

effective for modeling regime changes, which often occur unpredictably. 

 

While Markov Chains and their extensions, such as Markov Switching Models (MSM), are 

powerful in detecting regime changes, they also come with practical challenges. One major issue 

is their sensitivity to initial parameters, which can lead to convergence problems or local optima 

during estimation. Moreover, the choice of the number of regimes is often subjective and may 

influence model performance if not empirically validated. In emerging or thinly traded 

markets—such as several in the MENA region—low liquidity and data irregularities can lead to 

misclassification of regimes or unstable transition probabilities. Additionally, Markov models 

assume that regime transitions are driven by internal market dynamics, but in practice, external 

macroeconomic shocks or structural changes may influence market behavior in ways that violate 

the Markov property. These limitations necessitate careful interpretation and, in many cases, 

supplementary diagnostic testing or robustness checks when applying MSM to real-world 

financial data (Hamilton, 1990; Guidolin & Timmermann, 2007). 

 

Unlike traditional financial models that assume linear relationships, Markov Chains 

accommodate dynamic, state-dependent adjustments, making them particularly useful for 

identifying when markets shift between: 

 Bullish and bearish trends, helping investors adjust strategies accordingly. 

 Stable and volatile conditions, enabling better risk management. 
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 Efficient and inefficient market phases, allowing traders to recognize opportunities for 

arbitrage. 

By applying Markov Chains to market analysis, researchers and analysts can better understand 

how efficiency fluctuates, supporting the Adaptive Market Hypothesis (AMH), which argues that 

market efficiency is not fixed but evolves over time. 

2.8.3. Applications of Markov Switching Models (MSM) 

Empirical research has validated the effectiveness of Markov Switching Models (MSM) in 

identifying market regime shifts. Rodrigues do Carmo (2017) demonstrated that MSMs 

outperform traditional financial models in predicting market transitions, proving that financial 

markets do not follow a strict linear pattern but instead shift between different efficiency levels.  

Further supporting this, Aronsson and Folkesson (2023) conducted an analysis of the Swedish 

OMXS30 index, finding that volatility clustering, where periods of high volatility are followed 

by further volatility, aligns with Markov Chain predictions. This finding confirms the Adaptive 

Market Hypothesis (AMH) assertion that market efficiency fluctuates rather than remains 

constant. 

In another application, Kim, Shamsuddin, and Lim (2011) used Hidden Markov Models 

(HMMs) on U.S. stock market data, identifying distinct cycles between high and low efficiency 

states. Their findings reinforce the idea that market efficiency is an evolving feature shaped by 

investor behavior, external economic shocks, and technological advancements. 

2.8.4. High-Frequency Trading (HFT)  

A further dimension of market adaptation involves high-frequency trading (HFT), where 

advanced algorithms execute trades in milliseconds. Meng & Li (2021) explored the relationship 

between HFT and market efficiency, uncovering a dual effect: 

 HFTs exploit short-term inefficiencies, taking advantage of momentary mispricings in the 

market. 

 Over time, HFT activity contributes to overall market efficiency, as it forces price 

corrections faster than in traditional trading environments. 

 However, in the short term, HFTs also introduce micro-level distortions, creating 

increased volatility and price dislocations that reduce stability. 

This finding aligns with the core premise of AMH. Market efficiency is a dynamic process, and 

technological advancements like HFT can simultaneously disrupt and improve it depending on 

the phase and structure of the market.  

2.8.5. Macroeconomic and Political Drivers of Efficiency Shifts 

While internal market behavior plays a significant role in efficiency transitions, external 

economic and political factors also impact how markets adapt. Various studies have explored the 

role of macroeconomic events, trade wars, and financial instability in shaping market efficiency 

cycles. 



 

26 
 

A study on commodity markets by Rejeb and Boughrara (2013) demonstrated that periods of 

economic instability, global recessions, and trade wars lead to highly inefficient markets. Their 

findings showed that commodities such as gold, oil, and agricultural products are particularly 

vulnerable to inefficiencies during financial crises. This is largely due to speculative trading and 

investor sentiment overpowering fundamental valuation, reinforcing the need for adaptive 

financial models that account for these fluctuations. 

Similarly, Ghazani & Araghi (2014) applied Markov Switching Models (MSM) to emerging 

markets, discovering that political risks and monetary policy shifts significantly impact market 

efficiency. Their research highlighted that: 

 Currency fluctuations, interest rate changes, and inflation volatility affect the speed at 

which markets transition between high and low efficiency states. 

 Periods of heightened political uncertainty contribute to prolonged inefficiencies, as 

investors become more cautious and reactive rather than following fundamental market 

indicators. 

These studies demonstrate that financial markets do not function in isolation; they are influenced 

by macro-level economic and geopolitical developments, reinforcing AMH’s premise that 

market efficiency is an ever-changing characteristic rather than a fixed state. 

2.9. Momentum Strategies  

Financial markets are like vast oceans, sometimes calm, sometimes stormy, but never truly still. 

Traders, much like skilled sailors, navigate through shifting conditions, adapting to the forces of 

supply, demand, sentiment, and information flow. Some ride the waves of momentum, taking 

advantage of trends that persist, while others anticipate reversals, waiting for inefficiencies to 

correct. Momentum investing is based on a straightforward idea: assets that have performed well 

recently will continue to do so in the short term. 

This approach challenges the Efficient Market Hypothesis (EMH), which assumes prices 

instantly reflect all information, leaving no room for predictable trends. However, it fits perfectly 

with the Adaptive Market Hypothesis (AMH), which argues that markets are not always efficient 

but adapt as investors learn and compete. 

2.9.1. Persistence of Momentum Effects 

If markets were perfectly efficient, momentum would not exist, past performance would not 

predict future results. Yet, evidence shows it does, because price adjustments take time. Several 

factors explain this persistence: 

 Slow Information Processing: Investors do not react to news, economic data, or earnings 

reports all at once. Some act quickly, while others take longer, causing prices to adjust 

gradually. 

 Behavioral Influences (biases): Overconfidence leads traders to stick with winning assets, 

and herd behavior pulls others into the trend, strengthening momentum. 
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 Unequal Access to Information (Information asymmetry): Large institutional investors 

often move before smaller retail traders, extending trends until the market fully catches 

up. (Large institutional players often act before retail investors, allowing momentum 

effects to persist until the market fully adjusts.) 

These forces create temporary inefficiencies, offering opportunities for traders who understand 

how and when markets adapt. Momentum is not an anomaly; it is a symptom of evolving 

efficiency, as AMH predicts. 

2.9.2. Empirical Evidence on Momentum Anomalies 

The evidence for momentum is not just anecdotal; it is robust, spanning decades and markets. In 

1993, Jegadeesh and Titman cracked open the momentum puzzle, showing that stocks with 

strong past performance consistently outperformed over short horizons, a finding that shook the 

Efficient Market Hypothesis (EMH) to its core. 

Fast forward to 2022, and Munir et al. uncovered a twist: momentum effects intensify during 

financial crises, aligning with the Adaptive Market Hypothesis (AMH) claim that market 

efficiency is conditional and evolves in response to economic turbulence. Their study revealed 

that during periods of uncertainty, investors rely more heavily on recent trends, making 

momentum-based strategies even more effective. 

Akhter and Yong (2019) tied these findings to AMH by applying momentum models within its 

framework, confirming that momentum strategies remain profitable but are highly time-

dependent. Their results suggest that momentum profits are not constant but fluctuate based on 

liquidity, volatility, and macroeconomic conditions, reinforcing the AMH's dynamic efficiency 

concept. 

2.10. Digital Asset Markets 

Cryptocurrency markets have defied every traditional economic model, behaving in ways that 

have left even the most experienced analysts struggling to keep up. Extreme price fluctuations, 

inefficient price discovery, and unpredictable investor behavior define this space. Yet, the 

evolution of the crypto market over the past decade provides one of the strongest real-world 

validations of the Adaptive Market Hypothesis (AMH). 

2.10.1. Early-Stage Inefficiencies  

In its early years, the Bitcoin market was comparable to a "wild west," characterized by thin 

trading volumes, high volatility, and rampant speculation. Prices were driven less by 

fundamentals and more by hype, misinformation, and manipulation. According to Chu et al. 

(2021) and Manahov et al. (2021), early crypto markets were highly inefficient, suffering from: 

 Low liquidity, where large price swings occurred due to the lack of deep order books. 

With shallow order books, even small trades triggered massive price movements, leading 

to excessive volatility. 
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 Speculative trading, where prices were driven more by sentiment than by fundamental 

value. 

 Lack of institutional investors, where, in the absence of stabilizing institutional players, 

retail speculation drove extreme price fluctuations and created short-term price 

distortions rather than rational market behavior. 

2.10.2. Efficiency Transitions 

Several studies have explored how cryptocurrency markets evolved over time, transitioning from 

extreme inefficiencies to more structured efficiency cycles: 

 Chu et al. (2021) and Manahov et al. (2021) examined Bitcoin, Ethereum, and other 

digital assets, finding that market efficiency in the crypto sector is highly volatile. Their 

research showed that early-stage cryptocurrency markets were inefficient, but as 

institutional investors and algorithmic trading entered the space, efficiency gradually 

improved. 

 Alvarez-Ramirez et al. (2018) used Markov models to track Bitcoin’s efficiency cycles, 

revealing that cryptocurrency markets follow a similar efficiency pattern to traditional 

stock markets, with cyclical phases of inefficiency and efficiency. This further supports 

AMH’s core argument that market efficiency is a dynamic property rather than a fixed 

state. 

This pattern is precisely what AMH suggests: markets are never fully efficient or inefficient; 

they fluctuate based on competition, learning, and technological advancements. 

2.11. Machine Learning Approaches 

Traditional econometric models, such as Markov Switching Models and momentum strategies, 

have been instrumental in identifying structural breaks and persistent patterns in financial time 

series. However, the dynamic and nonlinear nature of financial markets, as posited by the 

Adaptive Market Hypothesis (AMH), necessitates more flexible and adaptive modeling 

techniques. Machine learning, particularly deep learning models like Long Short-Term Memory 

(LSTM) networks, has emerged as a promising approach to address these complexities. 

2.11.1. LSTM Models  

LSTM networks, a type of recurrent neural network introduced by Hochreiter and Schmidhuber 

(1997), are designed to capture long-term dependencies in sequential data. Their architecture 

allows for the retention of information over extended periods, making them well-suited for 

modeling financial time series characterized by volatility clustering and temporal dependencies. 

Studies have demonstrated the efficacy of LSTM models in forecasting stock prices and 

volatility, outperforming traditional models like ARIMA and Support Vector Machines in certain 

contexts. 
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Despite their advantages, LSTM models are not without limitations. They often require large 

training datasets, making them less suitable for smaller markets or shorter timeframes. They are 

also computationally intensive, demanding significant resources and fine-tuning to avoid 

overfitting. Moreover, LSTM models operate as “black boxes,” offering little transparency into 

the causal relationships driving their forecasts, which complicates financial interpretation and 

limits their acceptance in policy or compliance contexts. In addition, LSTMs may not handle 

regime shifts or abrupt changes effectively unless adjusted with supplementary tools such as 

regime overlays, attention mechanisms, or hybrid frameworks. Their sensitivity to 

hyperparameters and initial conditions also poses challenges, as small changes can lead to 

significantly different outputs. For these reasons, researchers often integrate LSTM with 

econometric models such as ARIMA or Markov Switching Models to improve interpretability, 

resilience, and alignment with market structure (Bao et al., 2017; Fischer & Krauss, 2018). 

In our study, we employed LSTM models in two distinct phases. Initially, we trained the model 

on a decade of historical data to forecast the subsequent five years, incorporating regime 

overlays for refinement. This approach yielded satisfactory forecasting accuracy, as evidenced 

by metrics such as RMSE. However, when the model was trained on the entire historical dataset 

to predict the next year without real-time feedback or adjustment, the forecasts became overly 

simplistic and failed to capture the complexities of market dynamics. 

2.11.2. Hybrid LSTM Models and Adaptive Forecasting 

To overcome the limitations of standalone LSTM models, researchers have increasingly turned 

to hybrid forecasting frameworks that combine LSTM with complementary techniques. These 

combinations are intended to improve accuracy, robustness, and adaptability, which are 

especially important under the assumptions of the Adaptive Market Hypothesis (AMH), where 

financial efficiency is considered dynamic and evolving. 

One prominent class of hybrid models integrates wavelet transforms with LSTM networks. 

Wavelet decomposition allows the original financial time series to be separated into different 

frequency components. This process reduces noise and isolates patterns at multiple time scales. 

The decomposed signals are then fed into the LSTM architecture, improving learning efficiency 

and prediction accuracy. Zhang et al. (2024) developed a Wavelet-ARIMA-LSTM hybrid that 

successfully forecasted share price index futures. Similarly, Nguyen et al. (2019) demonstrated 

that a Wavelet-SVR-LSTM model could handle non-stationary stock series more effectively. 

Another emerging architecture is the BiLSTM-Attention-CNN model. This framework combines 

Convolutional Neural Networks (CNN) for feature extraction, Bidirectional LSTM (BiLSTM) 

for learning temporal dependencies in both directions, and attention layers to dynamically weigh 

the most relevant parts of the sequence. Wang (2024) applied this model to stock price 

forecasting and found that it improved short-term trend capture and pattern recognition. Zhang et 

al. (2023) further validated its performance in highly volatile financial indices, showing that it 

outperformed conventional deep learning models in both accuracy and adaptability. 



 

30 
 

In addition, hybrid models that combine LSTM with classical econometric techniques, such as 

ARIMA, have shown promising results. These models, often referred to as LSTM-ARIMA, use 

ARIMA to model the linear component of the data and LSTM to capture the nonlinear behavior. 

Kashif and Ślepaczuk (2024) reported that their LSTM-ARIMA approach outperformed 

standalone models in the context of algorithmic trading strategies. 

Recent developments have also introduced metaheuristic optimization algorithms to enhance the 

performance of LSTM models. Gülmez and Selçuklu (2024) presented a version of LSTM 

optimized using the Artificial Rabbits Optimization (ARO) algorithm. Their model delivered 

superior prediction accuracy across electricity and stock market datasets. These optimization 

methods address key challenges in LSTM such as sensitivity to initial weights and 

hyperparameter selection, leading to more stable and generalizable forecasting tools. 

Collectively, these hybrid machine learning models represent an important evolution in 

forecasting methodologies. They allow researchers to better account for structural shifts, 

complex behavioral patterns, and market adaptability. Their ability to combine deep learning, 

signal processing, statistical modeling, and attention mechanisms makes them well suited for 

analyzing financial markets in alignment with the core principles of the Adaptive Market 

Hypothesis. 

However, despite their flexibility and enhanced predictive power, hybrid models also present 

challenges. The integration of multiple modeling layers increases the risk of overfitting, 

especially in financial datasets with noise and structural breaks. Their complexity can reduce 

transparency and make model validation more difficult, particularly when combining machine 

learning with signal transformation or metaheuristic optimization. Additionally, the 

interpretability of results may suffer when several algorithms are stacked without a clear 

understanding of how each contributes to the final prediction. These issues become more 

pronounced when applying hybrid models to emerging markets, where data availability and 

quality are often limited. Therefore, while hybrid LSTM architectures hold strong potential, they 

must be implemented with careful tuning, cross-validation, and economic reasoning to avoid 

misleading or unstable outputs. 

 

 

 
Figure 1: Architecture of the CNN–BiLSTM-Attention hybrid model. 



 

31 
 

 
Figure 2: Structure of a Wavelet-LSTM hybrid forecasting model. 

 

2.12. Research Gap and Hypothesis Development 

Despite the substantial theoretical and empirical developments in understanding market 

efficiency through EMH and its alternatives, there remains a critical gap in the literature. While 

the Adaptive Market Hypothesis (AMH) has gained growing empirical support, most studies 

have focused on developed markets or applied limited time windows, failing to capture long-

term and region-specific adaptive behavior. Few have employed dynamic, regime-sensitive 

models such as Markov Switching Models (MSM) to quantify the evolution of efficiency, 

especially in MENA-region markets. Additionally, the integration of machine learning 

techniques, particularly Long Short-Term Memory (LSTM) neural networks, with econometric 

frameworks to forecast market behavior under adaptive conditions remains underexplored. This 

study addresses this gap by combining Markov regime-switching models, momentum strategy 

testing, and LSTM forecasting on daily data across nine MENA markets. In doing so, it aims to 

provide a comprehensive, data-driven validation of AMH within a previously underrepresented 

regional and methodological context. 

Several recent studies have attempted to explore aspects of AMH using localized or limited 

methodological tools. For example, Mandacı et al. (2019) examined time-varying efficiency in 

Borsa Istanbul using variance ratio and BDS tests, but did not incorporate forecasting or regime 

modeling. Similarly, Urquhart and McGroarty (2016) applied rolling window tests to major 

developed markets, confirming time variation but without structural modeling of efficiency 

phases. Munir et al. (2022) investigated contrarian effects in South Asia under AMH 

assumptions but lacked forecasting tools or hybrid models. These studies support the core ideas 

of AMH but leave unexplored the joint application of MSM and LSTM in emerging markets. 

Our study builds on this foundation by integrating regime-switching, momentum-based 

validation, and deep learning-based forecasting to analyze efficiency evolution over a longer 

timeframe. This integrated approach helps close the empirical gap, especially in the context of 

MENA markets, which are structurally different and more prone to behavioral dynamics and 

information asymmetry. 

Based on the above, the research hypothesis is formulated as below: 

𝐻0: There is no significant relationship between the dynamic shifts in market efficiency and the 

ability to generate abnormal returns. 
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This means that financial markets in the MENA region do not adapt in a manner consistent with 

the Adaptive Market Hypothesis. 

3. METHODOLOGICAL FRAMEWORK 

This section outlines the methodological framework adopted to empirically examine the 

Adaptive Market Hypothesis (AMH) across nine MENA-region financial markets using a 

combination of econometric and machine learning techniques. The approach integrates 

descriptive statistical analysis, stationarity testing, Markov Switching Models, momentum 

profitability strategies, and long-term forecasting via LSTM neural networks. 

3.1. Research Design 

This research adopts a quantitative, exploratory, and comparative design. It aims to test the 

hypothesis that financial market efficiency is dynamic and evolves over time, a core proposition 

of AMH. To achieve this, the study employs a dual-phased approach: 

 Econometric Modeling using regime-based probabilistic tools (Markov Chains) and 

performance-based strategies (momentum). 

 Machine Learning Forecasting using LSTM (Long Short-Term Memory) models to 

simulate and validate future efficiency dynamics. 

3.2. Analytical Framework 

The empirical framework integrates three components, each capturing a different dimension of 

market adaptability. Markov Switching Models are used to classify time-series data into efficient 

and inefficient regimes based on volatility structures. Momentum strategies test for the 

persistence of returns, revealing short-term inefficiencies consistent with behavioral biases. 

Finally, LSTM neural networks are employed to forecast future prices, with regime overlays 

applied to account for nonlinear and state-dependent behavior. This multi-method framework 

provides a robust structure for confirming AMH empirically. 

A simplified visualization of this analytical framework is shown in Figure 3 below. 
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Figure 3. Data Collection 

3.3. Data Collection Methods 

Daily historical market data was collected for nine financial markets from different countries as 

shown in Table 1. 

Table 1. Country Code Reference Table 

Code  Country 

DFMGI  United Arab Emirates 

BKA  Kuwait 

MASI  Morocco 

EGX100  Egypt 

TASI  Saudi Arabia 

MSM30  Oman 

AMMAN  Jordan 

BAX  Bahrain 

QSI  Qatar 

The dataset includes over fifteen years of data for most indices, comprising the following 

variables: closing prices, daily returns, trading volume, and open-high-low-close (OHLC) 

information. 
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Data processing and statistical analyses were conducted using Python 3.12 (Python Software 

Foundation, 2023), utilizing the following libraries: 

 LSTM modeling: TensorFlow (v2.15) with Keras API 

 Markov switching models: statsmodels (v0.14) for regime detection 

 Momentum analysis: pandas_ta (v0.3) for technical indicators 

 Data processing and manipulation: Pandas (v2.1) and NumPy (v1.26) 

 Scientific computing: SciPy (v1.11) 

The computational environment was managed via conda to ensure reproducibility, package 

control, and version consistency across all analytical stages. 

The Python environment provided a robust framework for calculating returns, running 

descriptive statistics, performing unit root and normality tests, applying Markov Switching 

Models, evaluating momentum strategy performance, and developing LSTM-based forecasting 

models. This ensured a consistent, reproducible, and efficient computational workflow 

throughout the research. 

3.4. Sampling Strategy 

The sampling strategy involved two distinct phases aligned with the dual objectives of the study: 

1. Phase 1: Econometric Analysis (Markov Models + Momentum Strategies) 

For each of the nine markets, the full available daily dataset was utilized to conduct: 

 Log return computation 

 Descriptive statistics 

 Unit root and normality testing 

 Markov regime classification 

 Momentum profitability tests 

This allowed us to observe long-run behavior across multiple market cycles, ensuring a robust 

examination of time-varying efficiency consistent with the Adaptive Market Hypothesis (AMH). 

No artificial truncation of the sample was applied, enabling each model to detect regime 

transitions and momentum patterns across the full historical span. 

2. Phase 2: Machine Learning Forecasting (LSTM Model) 

A temporal holdout method was adopted to train and validate the LSTM forecasting model: 

 Training set: The first 10 years of historical data 

 Testing set: The most recent 5 years, which were already observed 

The model was trained to predict the test period and its output was compared with actual returns. 

Markov regime probabilities were then used to adjust the forecasts, enhancing interpretability 

and correcting potential inefficiencies. 
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This dual-phase sampling approach ensures the integrity of both retrospective (econometric) and 

predictive (machine learning) components of the research, allowing each to independently and 

jointly contribute to confirming AMH dynamics. 

3.5. Analytical Approach 

3.5.1. Descriptive and Preliminary Statistical Analysis 

Each market's return series was converted into log returns to standardize volatility and improve 

statistical properties for modeling. This transformation also supports time-additivity and 

stabilizes variance. Descriptive statistics, including mean, standard deviation, skewness, and 

kurtosis, were computed for each return series to assess distributional characteristics. To evaluate 

normality, a key assumption in many econometric models, the Jarque-Bera test was applied. The 

full formula, test assumptions, and derivation of the Jarque-Bera statistic are provided in 

Appendix A to enhance clarity without overwhelming the main text. In addition to the test 

statistic, the p-value associated with the JB test was reported. The p-value indicates the 

probability of observing the given skewness and kurtosis under a normal distribution. A p-value 

less than 0.05 suggests a statistically significant deviation from normality, which supports the 

presence of potential inefficiencies in the return series. 

3.5.2. Stationarity Tests 

Before the application of time-series models, it was essential to test the stationarity of the log 

return series to ensure that their statistical properties, such as mean and variance, remained stable 

over time. Stationarity is a foundational requirement for valid application of econometric models 

such as Markov Switching Models and neural networks like Long Short-Term Memory (LSTM). 

To assess this, two complementary unit root tests were employed: 

 Augmented Dickey-Fuller (ADF) Test 

 Phillips-Perron (PP) Test 

 

Both tests assess the null hypothesis that the return series contains a unit root, indicating non-

stationarity. Rejection of the null supports the presence of stationarity, validating the use of 

regime-switching and forecasting models in the subsequent analysis. 

The PP test differs from ADF by adjusting for serial correlation and heteroskedasticity using a 

non-parametric correction. This makes it more suitable when error terms may not be 

independently and identically distributed. Rejection of the null hypothesis in either test indicates 

stationarity, confirming that the return series is appropriate for modeling using Markov models 

and LSTM networks. 

The Full equations and technical assumptions for the ADF and PP tests are detailed in Appendix 

A for reference. 



 

36 
 

3.6. Econometric Modeling: Markov Switching Models 

To detect shifts in market efficiency and capture regime dynamics, two-state Markov Switching 

Models were employed. These models classified market behavior into: 

 Regime 0: Low volatility, considered as the efficient state 

 Regime 1: High volatility, representing the inefficient state 

Each market’s return series was analyzed to estimate: 

 Transition probabilities between regimes 

 Variance within each regime 

 The persistence of efficiency and inefficiency across time 

The models assume that returns alternate probabilistically between different regimes based 

on the Markov property, where the next state depends only on the current one. This 

memoryless structure aligns conceptually with the Adaptive Market Hypothesis, which 

posits that markets react to recent conditions rather than following deterministic patterns. 

The full specification of the Markov Switching Model, including the regime-dependent 

mean-variance formulation and the transition probability matrix, is provided in Appendix 

B. This allows readers to consult the technical details while maintaining fluency and 

accessibility in the main methodological narrative. 

3.7. Momentum Strategies: A Profitability-Based Test 

To empirically evaluate market inefficiencies and complement the regime-based results, 

this study implemented two momentum strategies: 

 Momentum 250-day 

 Momentum 500-day 

The selection of these time horizons is grounded in both empirical evidence and behavioral 

finance theory. The 250-day window approximates one calendar year and corresponds with 

institutional portfolio rebalancing cycles. It aligns with foundational research by Jegadeesh 

and Titman (1993), which documented momentum persistence over similar horizons. The 

500-day window extends the analysis to a longer-term cycle, allowing for the detection of 

deeper structural inefficiencies and smoother trend effects. 

These strategies are designed to exploit persistent trends in returns by generating trading 

signals based on lagged price comparisons. When the current asset price exceeds its level n 

days earlier, a long position is taken; otherwise, the strategy stays out of the market. Daily 

strategy returns are computed accordingly.  
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Their performance was benchmarked against a passive Buy-and-Hold strategy to evaluate 

relative profitability and to identify periods of exploitable inefficiency. Outperformance by 

momentum strategies would suggest that historical price patterns retained predictive 

power, consistent with the Adaptive Market Hypothesis, which views market efficiency as 

dynamic and evolving over time. Full strategy logic, signal criteria, and cumulative return 

formulas are presented in Appendix C for technical reference. 

3.8. Machine Learning Forecasting: Long Short-Term Memory (LSTM) 

To further investigate market adaptability and forecast future price behavior, the study 

employed Long Short-Term Memory (LSTM) neural networks. LSTM is a type of 

recurrent neural network capable of capturing nonlinear patterns and long-term 

dependencies in sequential financial data, which makes it particularly suitable for 

modeling the structural complexity described by the Adaptive Market Hypothesis. 

The forecasting was conducted in two phases: 

1) First, the LSTM model was trained on the initial 10 years of historical log return data to 

predict the subsequent 5-year period. The model’s outputs were then adjusted using 

regime probabilities derived from the previously estimated Markov Switching Models. 

This hybrid structure allows the LSTM to produce regime-aware forecasts that reflect 

both temporal patterns and changes in efficiency states. 

2) In the second application, the LSTM model was trained on the entire 15-year dataset to 

generate a full-year forecast for 2025. Unlike the first phase, this setup excluded any 

actual 2025 data, simulating a purely forward-looking prediction. Although initial 

forecasts reflected observed patterns, the model’s long-range accuracy declined without 

real-time feedback, highlighting the limitations of static training in dynamic financial 

environments. 

Forecast accuracy was evaluated using Root Mean Squared Error (RMSE) to quantify 

deviations between predicted and actual values. To further strengthen the statistical rigor of 

model evaluation, future iterations of this research will incorporate the Diebold-Mariano 

(DM) test to formally compare the predictive performance of the LSTM-based model with 

benchmark alternatives. The DM test will allow us to determine whether observed forecast 

improvements are statistically significant, providing deeper insight into the value added by 

regime-aware machine learning techniques. 

A detailed overview of the LSTM structure, input formatting, loss function, evaluation 

metrics, and regime correction formulas is included in Appendix D. 
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4. RESULTS AND ANALYSIS 

This section presents the empirical findings obtained through a multi-method framework 

designed to evaluate the Adaptive Market Hypothesis (AMH) across nine MENA-region 

financial markets as follows:  

4.1. Descriptive Statistics  

The descriptive statistics presented in Table 2 show that daily returns across the nine MENA-

region markets differ notably in terms of volatility, symmetry, and tail behavior. Mean returns 

are mostly close to zero, with some markets showing slightly negative averages, while standard 

deviations highlight moderate to high volatility, suggesting varied risk levels. Negative skewness 

is common, indicating a higher probability of extreme losses than gains. Additionally, the excess 

kurtosis in all markets reveals the presence of heavy tails, pointing to more frequent extreme 

price movements than would be expected under a normal distribution. These observations are 

supported by the Jarque-Bera test results, where most markets show significant deviations from 

normality (p-values < 0.05). Such statistical patterns challenge the assumptions of the Efficient 

Market Hypothesis and instead support the Adaptive Market Hypothesis, which acknowledges 

that market efficiency fluctuates due to behavioral, structural, and informational factors. 
 

Table 2. Descriptive Statistics  

Code country Mean Std. Dev. Skewness Kurtosis 
Jarque-

Bera (JB) 

JB P-

value 

DFMGI UAE 0.0004777 0.0105306 -1.0429881 14.186882 8088.206 0 

BKA Kuwait 0.0002486 0.0083725 -2.9828881 32.375758 54997.257 0 

MASI Morocco 0.0001791 0.0077072 -1.8710261 25.797292 33201.801 0 

EGX100 Egypt 0.0010427 0.0004129 -1.3052475 4.7718189 604.292 0 

TASI Saudia 

Arabia 

0.0003377 0.0002517 -1.2496848 11.8021202 5222.295 0 

MSM30 Oman 0.0000370 0.0053737 -0.899026 11.5590019 8404.473 0 

Amman Jordan 0.000138 0.006664 -0.07 5.176911 1602.495 0 

BAX Bahrain 0.0002722 0.0053411 -1.2391734 19.295456 23243.557 0 

QSI Qatar 0.0000186 0.0088601 -1.1331086 13.822933 7616.504 0 

4.2. Stationarity Tests (ADF and PP) 

Table 3 presents the results of the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit 

root tests applied to the log return series to determine whether each market's return process is 

stationary, which is a critical assumption for regime-switching models and LSTM forecasting.  

The results of both ADF and PP tests revealed to the rejection of the null hypothesis of a unit 

root at conventional significance levels across all nine markets, confirming the stationarity of the 

log return series. This is a necessary precondition for applying both Markov regime-switching 

models and LSTM-based neural forecasting. The consistent rejection of non-stationarity also 

suggests that return dynamics can be modeled using lag-based and state-transition techniques, 

further supporting the methodological choices made in this study. 
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Table 3. Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests 

        

 

Exchange market 

(Variable) 

Test Equation ADF unit root test PP unit root test 
 

 

Levels 
1st 

Difference 
Levels  

1st 

Difference 
 

 

DFMGI           
 

 

None -2.566507 -2.566518 -2.566507 -2.566508 
 

 

Intercept only -3.434508 -3.434540 -3.434508 -3.434511 
 

 

Intercept & Trend -3.964182 -3.964228 -3.964182 -3.964186 
 

 
BKA 

      

 

None -2.566538 -2.566552 -2.566538 -2.566539 
 

 

Intercept only -3.434597 -3.434636 -3.434597 -3.434600 
 

 

Intercept & Trend -3.964308 -3.964364 -3.964308 -3.964312 
 

 
MASI 

      

 

None -2.566513 -2.566528 -2.566513 -2.566514 
 

 

Intercept only -3.434526 -3.434567 -3.434526 -3.434528 
 

 

Intercept & Trend -3.964207 -3.964265 -3.964207 -3.964211 
 

 
EGX100  

      

 

None -2.566551 -2.566562 -2.566509 -2.566552 
 

 

Intercept only -3.434633 -3.434664 -3.434633 -3.434636 
 

 

Intercept & Trend -3.964360 -3.964403 -3.964360 -3.964364 
 

 
TASI  

      

 

None -2.566509 -2.566523 -2.566509 -2.566510 
 

 

Intercept only -3.434514 -3.434555 -3.434514 -3.434517 
 

 

Intercept & Trend -3.964190 -3.964248 -3.964190 -3.964194 
 

 
MSM30  

      

 

None -2.566533 -2.566547 -2.566533 -2.566534 
 

 

Intercept only -3.434582 -3.434621 -3.434582 -3.434585 
 

 

Intercept & Trend -3.964286 -3.964511 -3.964286 -3.964291 
 

 
Amman  

      

 

None -2.566577 -2.566589 -2.566577 -2.566578 
 

 

Intercept only -3.434705 -3.434740 -3.434705 -3.434708 
 

 

Intercept & Trend -3.964461 -3.964511 -3.964461 -3.964466 
 

 
BAX  

      

 

None -2.566533 -2.566544 -2.566533 -2.566534 
 

 

Intercept only -3.434582 -3.434612 -3.434582 -3.434585 
 

 

Intercept & Trend -3.964286 -3.964329 -3.964286 -3.964291 
 

 
QSI  

      

 

None -2.566511 -2.566526 -2.566511 -2.566512 
 

 

Intercept only -3.434520 -3.434564 -3.434520 -3.434523 
 

 

Intercept & Trend -3.964198 -3.964261 -3.964198 -3.964203 
 

 

4.3. Markov Regime Switching Analysis 

This section presents the results of the two-state Markov Switching Model applied individually 

to each of the nine financial markets. For every market, a detailed table is included that outlines 

the estimated parameters for Regime 0 (interpreted as efficient) and Regime 1 (interpreted as 

inefficient). These parameters include the intercept values (const), regime-specific variances 

(sigma²), and their statistical significance(𝑃 > |𝑧|). 
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In addition to these core parameters, each table reports the regime transition probabilities, which 

describe the likelihood that a market remains in the same regime or shifts to the other. For 

example, 𝑃[0 → 0] reflects the probability that the market remains in the efficient regime, while 

𝑃[1 → 0] reflects the probability that it switches from an inefficient to an efficient regime. These 

probabilities are critical for understanding each market's stability and adaptability over time, 

revealing not only how long it remains efficient but also how quickly it recovers from periods of 

inefficiency. To enhance the interpretation of regime dynamics, smoothed probability graphs are 

provided for each market. These graphs display, at each time point, the estimated probability of 

being in either Regime 0 (efficient) or Regime 1 (inefficient). Higher probabilities for Regime 0 

indicate stable and efficient market conditions, while higher probabilities for Regime 1 reflect 

phases of heightened market inefficiency. This visual representation allows for a clearer 

understanding of market transitions and persistence across different economic cycles. 

The following sections present the empirical results of the Markov Switching analysis for each of 

the nine MENA markets, illustrating the estimated parameters, regime-specific variances, and 

transition probabilities, along with the smoothed probability graphs for a comprehensive view of 

market dynamics. 

UAE 

 

Table 4.  Table 4: UAE – Markov Switching Analysis 

 Regime 0 parameters Regime 1 Parameters Regime transition parameters 

 Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| 
const 0.0008 0 -0.002 0.304  

sigma2 4.268E-05 0 0.0006 0 

𝑷 [𝟎−> 𝟎]  0.9757 0 

𝑷 [𝟏−> 𝟎] 0.1760 0 

 

 

The UAE market exhibited high persistence in the efficient regime, with a transition probability 

of 0.9757. The probability of moving from an inefficient to an efficient state was 0.1760, 

suggesting moderate adaptability. Volatility was significantly lower in Regime 0 (σ² = 4.268E-

05) compared to Regime 1 (σ² = 0.0006), supporting the presence of dynamic shifts in market 

efficiency. The smoothed probability plot, presented in Figure 4, illustrates prolonged periods of 

stability interrupted by brief inefficiency phases, validating the Adaptive Market Hypothesis 

(AMH) in this market. 

Notably, several regime switches align with regional economic events, such as the COVID-19-

driven demand shock in 2020 and recovery phases linked to Expo 2020 in 2021–2022, both of 

which likely altered investor sentiment and risk pricing. 
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Figure 3: UAE’s Smoothed Probability 

 

 

Kuwait 

 

Table 5. Kuwait – Markov Switching Analysis 

 Regime 0 parameters Regime 1 Parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const 0.0008 0 -0.0028 0.018  

sigma2 2.135E-05 0 0.0003 0 

𝑷[𝟎−> 𝟎]  0.9747 0 

𝑷[𝟏−> 𝟎] 0.1295 0 

 

 

Kuwait’s market demonstrated strong regime persistence with a 0.9747 probability of remaining 

efficient, but a moderate 0.1295 chance of switching from inefficiency to efficiency. The large 

difference in volatility between the two regimes (2.135E-05 vs. 0.0003) underscores clear regime 

segmentation. The market’s behavior supports the view that even highly efficient markets can 

occasionally exhibit inefficiencies before adapting back. 

Periods of inefficiency coincide with geopolitical uncertainty in the Gulf region during 2020, as 

well as fluctuations in oil prices and subsidy reform discussions, which may have affected 

institutional investor behavior and triggered transitional volatility. 
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Figure 4: Kuwait’s Smoothed Probability 

 

 

Morocco 

 

Table 6. Morocco – Markov Switching Analysis 

 Regime 0 parameters Regime 1 Parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const 0.0004 0 -0.0012 0.309  

sigma2 1.790E-05 1.55E-05 0.0003 0 

𝑷[𝟎−> 𝟎]  0.9507 0 

𝑷[𝟏−> 𝟎] 0.2676 0 

 

 

The Moroccan stock market showed relatively strong persistence in efficiency with a 0.9507 

transition probability in Regime 0, and a higher tendency (0.2676) for returning from 

inefficiency back to efficiency. The volatility difference between regimes (1.79E-05 vs. 0.0003) 

further emphasizes adaptive behavior. The smoothed probability plot shows more frequent 

regime changes compared to the UAE, reflecting faster correction mechanisms typical in 

evolving markets. 

These fluctuations may relate to domestic monetary tightening policies and global commodity 

pressures post-COVID-19, which introduced uncertainty to sectors like tourism and banking, 

driving brief periods of inefficiency. 
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Figure 5:  Morocco’s Smoothed Probability 

 

 

Egypt 

Table 7.  Egypt (EGX) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const 0.0031 0 -0.0075 0.001  

sigma2 0.0001 0 0.0007 0 

𝑷[𝟎−> 𝟎]   0.9587 0 

𝑷[𝟏−> 𝟎] 0.1733 0 

 

 

The EGX displayed notable adaptability, with a 0.9587 probability of remaining efficient and a 

0.1733 probability of moving from inefficiency to efficiency. Volatility sharply increased 

between regimes (0.0001 to 0.0007), highlighting significant shifts during inefficient phases. The 

probability graphs confirm frequent fluctuations, consistent with Egypt’s emerging market status 

and the AMH framework. 

Several regime shifts observed between 2020 and 2023 likely coincide with key economic 

disruptions, including the COVID-19 pandemic’s impact on capital markets, the 2022 Egyptian 

pound devaluation, and successive interest rate hikes driven by inflationary pressures. These 

events may have induced behavioral reactions, reduced investor confidence, and increased 

volatility, driving transitions into inefficient regimes as modeled by the Markov framework. 
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Figure 6: Egypt’s Smoothed Probability 

Saudi Arabia 

 

Table 8. Saudi Arabia (Tadawul) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const 0.0009 0 -0.0023 0.044  

sigma2 4.22E-05 0 0.0003 0 

𝑷[𝟎−> 𝟎]   0.9823 0 

𝑷[𝟏−> 𝟎] 0.0768 0 

 

 

The Saudi Tadawul market demonstrated extremely high persistence in efficiency (0.9823), 

suggesting remarkable market stability. However, the probability of correcting from inefficiency 

was low (0.0768), implying that once inefficiency occurs, correction takes longer. Volatility 

shifts were also pronounced (4.22E-05 vs. 0.0003). This stability amid slow correction cycles 

mirrors the mixed behavior of developed markets. 

Efficiency shifts may correspond to market reactions following the 2020 oil price crash, the 2021 

Vision 2030 privatization announcements, or the 2022 Aramco dividend adjustments, all of 

which created episodes of investor repricing and regime persistence under varying volatility 

conditions. 
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Figure 7: Saudi Arabia’s Smoothed Probability 

 

Oman 

 

Table 9. Oman (MSM30) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const -0.0002 0.232 0.0009 0.203  

sigma2 1.369E-05 0 9.928E-05 0 

𝑷[𝟎−> 𝟎]   0.9397 0 

𝑷[𝟏−> 𝟎] 0.2826 0 

 

 

The Omani MSM30 index showed a 0.9397 chance of remaining efficient and a 0.2826 

probability of reverting from inefficiency, one of the higher reversion rates among the sample. 

The variance increase (1.369E-05 to 9.928E-05) signals considerable volatility shifts. Oman’s 

market shows greater adaptive flexibility compared to larger MENA markets. 

Volatility regimes in Oman appear responsive to fiscal reform efforts and public debt concerns 

during the COVID-19 recovery period, along with global rate hikes in 2022–2023 that may have 

influenced investor confidence and trading behavior. 
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Figure 8: Oman’s Smoothed Probability 

 

 

 

Jordan 

 

Table 10.  Jordan (Amman All Share) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| Coef. 𝑷 > |𝒛| 
const 8.321E-05 0.521 0.0002 0.603  

sigma2 1.254E-05 0 0.0001 0 

𝑷[𝟎−> 𝟎]   0.9690 0 

𝑷[𝟏−> 𝟎] 0.0561 0.002 

 

 

Jordan's Amman All Share Index presented a 0.9690 probability of maintaining efficiency and a 

0.0561 probability of returning to efficiency from an inefficient phase, which is one of the lowest 

reversion rates observed. The volatility jump between regimes (1.254E-05 to 0.0001) supports 

this observation. Jordan’s market stability and occasional inefficiencies align closely with AMH 

predictions. 

Episodes of inefficiency may correspond to macroeconomic pressures including rising debt 

levels, regional capital outflows, or political uncertainty during parliamentary cycles (2020), 

which affected liquidity and investor sentiment. 
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Figure 9: Jordan’s Smoothed Probability 

Bahrain 

 

Table 11. Bahrain (BAX) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| 
const 0.0004 0 -5.056E-05 0.925  

sigma2 6.326E-06 0 9.612E-05 0 

𝑷[𝟎−> 𝟎]   0.9349 0 

𝑷[𝟏−> 𝟎] 0.1999 0 

 

 

Bahrain’s market showed a 0.9349 probability of staying in the efficient regime and a 0.1999 

probability of correcting from inefficiency. The variance between regimes (6.326E-06 vs. 

9.612E-05) was substantial, indicating that inefficiencies are associated with significant volatility 

spikes. The smoothed probability graph reveals periodic inefficiencies followed by gradual 

stabilization phases. 

Periods of inefficiency align with fiscal deficit concerns, restructuring plans in the banking 

sector, and shifts in GCC monetary policy. These events likely introduced uncertainty, leading to 

short-lived inefficiency phases before reversion. 
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Figure 10: Bahrain’s Smoothed Probability 

 

Qatar 

 

Table 12. Qatar (QSI) – Markov Switching Analysis 

 Regime 0 parameters Regime 1 parameters Regime transition parameters 

 Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| Coef. 𝑷 > |𝒁| 
const 0.0004 0.065 -0.0008 0.247  

sigma2 2.988E-05 0 0.0002 0 

𝑷[𝟎−> 𝟎]   0.9563 0 

𝑷[𝟏−> 𝟎] 0.1036 0.001 

 

 

Qatar displayed strong persistence in efficiency (0.9563) and a lower tendency to correct from 

inefficiency (0.1036). Volatility surged during inefficient phases (from 2.988E-05 to 0.0002), 

consistent with periods of market instability. Smoothed probabilities suggest brief inefficient 

episodes, supporting the AMH's idea of markets adapting after disruption. 

These shifts likely coincide with global LNG price volatility and investor repositioning 

surrounding FIFA World Cup 2022 infrastructure spending, as well as post-event capital flow 

adjustments that triggered brief inefficiencies in late 2022 and early 2023. 
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Figure 11: Qatar’s Smoothed Probability 

4.4. Momentum Strategy Performance 

4.4.1. Cumulative Return Results 

Table 13 presents the final cumulative returns of the momentum strategies (250-day and 500-day 

windows) alongside the Buy & Hold benchmark across the nine MENA-region financial 

markets. The results reveal varying momentum effectiveness depending on market conditions. 

In most markets, Buy & Hold outperformed both momentum strategies. This includes Egypt, 

UAE, Kuwait, Morocco, Bahrain, and Oman, suggesting that during the sample period, 

consistent upward trends favored passive investment. These findings are consistent with 

relatively efficient or trending markets where long-term holding strategies captured broader 

movements more effectively. 

 

Table 13. Cumulative returns for all countries. 

Code Country Buy & Hold Momentum 250 Momentum 500 

DFMGI United Arab Emirates  2.05 1.65 1.62 

BKA Kuwait  1.44 0.73 1.23 

MASI Morocco  1.31 1.04 0.85 
EGX100 Egypt 4.57 3.75 3.36 
TASI Saudi Arabia 1.54 1.55 1.5 

MSM30 Oman 1.06 1.04 0.93 
AMMAN Jordan  1.22 1.56 0.98 

BAX Bahrain  1.49 1.11 1.33 

QSI Qatar  1.03 1.11 0.87 
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Figure 13:  UAE’s Cumulative Returns:  

Momentum VS Buy & Hold Figure 12: Kuwait’s Cumulative Returns: 

 Momentum VS Buy & Hold 

However, in markets such as Jordan, Qatar, and Saudi Arabia, momentum strategies, especially 

the 250-day variant, delivered superior cumulative returns. This indicates the presence of 

exploitable short- to medium-term inefficiencies, which supports the Adaptive Market 

Hypothesis (AMH). According to AMH, market efficiency is not fixed and may vary over time 

based on behavioral patterns, investor learning, and structural conditions. 

Overall, the mixed performance highlights the non-static nature of market efficiency across the 

region. This variation confirms the usefulness of momentum strategies as a tool for detecting 

time-varying inefficiency in line with the AMH framework. 

 

 

 

4.4.2. Graphical Comparison of Strategies  

The performance of the momentum strategies is further illustrated in the figures above, which 

present the cumulative return plots for each market under the three strategies:  

Buy & Hold, Momentum 250, and Momentum 500. 

The graphs provide a visual confirmation of the table results. In markets such as Saudi Arabia 

and Jordan, the Momentum 250 strategy consistently surpassed the passive strategy for extended 

periods, capturing strong trend-following behavior. In contrast, markets like Egypt and UAE 

exhibit long-term upward movement, where Buy & Hold maintained dominance throughout, 

reinforcing the observation that those markets were in more persistent efficient regimes. 

Additionally, the divergence in performance between Momentum 250 and 500 highlights the 

importance of strategy horizon selection. Momentum 250 generally performed better in more 

adaptive markets with shorter-term trends, while Momentum 500 occasionally lagged due to 

over-smoothing or delayed response. 

These graphical insights support the interpretation that market behavior varies significantly 

across countries and timeframes. Such heterogeneity reinforces the core premise of the Adaptive 

Market Hypothesis (AMH), which holds that financial markets adapt over time and are 

influenced by evolving investor dynamics, competition, and informational flow. 
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Figure 14: Morocco’s Cumulative Returns: 
 Momentum VS Buy & Hold 

Figure 15:  Egypt’s Cumulative Returns:  
Momentum VS Buy & Hold 

Figure 16: Saudi Arabia’s Cumulative Returns:  
Momentum VS Buy & Hold 

Figure 17: Oman’s Cumulative Returns:  
Momentum VS Buy & Hold 

Figure 18: Jordan’s Cumulative Returns:  
Momentum VS Buy & Hold 

Figure 19: Bahrain’s Cumulative Returns:  
Momentum VS Buy & Hold 
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Figure 20: Qatar’s Cumulative Returns:  
Momentum VS Buy & Hold 

4.5. LSTM Forecasting and Prediction Analysis 
This section presents the results of the Long Short-Term Memory (LSTM) neural network 

models applied to four selected markets: EGX, MSM30, Tadawul, and QSI. Two forecasting 

approaches were tested. The first involved forecasting based on historical data and validating 

against actual market returns, with predictions adjusted using Markov regime classification. The 

second involved training the model on the full historical dataset and forecasting the entire year of 

2025 without access to real-time data, incorporating both regime probabilities and trend pattern 

structures. Each experiment is presented separately below. 

4.5.1. LSTM + Markov: Forecasting with Observed Validation 

In this approach, the LSTM model was trained on historical data from 2009 to 2019 and used to 

forecast prices for 2020–2024. The results were directly compared to actual return data, and 

Markov regime probabilities were applied to adjust the forecasts for enhanced realism. 

Table 14 Table 14: EGX – LSTM Forecasting Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Date 
Actual 

Price 

LSTM 

Prediction 

Markov 

Corrected 

12/18/2024 11538.76 11855.25977 11791.35742 

12/19/2024 11532.93 11800.44824 11642.19727 

12/20/2024 11558.99 11743.02637 11609.2666 

2/21/2024 11298.43 11698.74805 11606.73047 

12/22/2024 11251.98 11598.79688 11398.6377 

12/23/2024 11275.97 11497.68066 11324.27344 

12/24/2024 11269.09 11420.99902 11310.14453 

12/25/2024 11181.23 11367.30566 11291.35156 

12/26/2024 10993.7 11314.87793 11221.83984 

12/27/2024 11217.62 11232.37695 11071.78809 

Model RMSE 

LSTM only 129.5042851 

LSTM + 

Markov 

93.70995537 
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The LSTM model applied to the EGX market produced an RMSE of 129.50, reflecting strong 

predictive accuracy. After adjusting the forecasts using Markov regime-switching probabilities, 

the RMSE further decreased to 93.71, suggesting that accounting for dynamic efficiency changes 

enhances forecast reliability in adaptive market environments. 

 

Table 15: MSM30 – LSTM Forecasting Analysis 

Date 
Actual 

Price 

LSTM 

Prediction 

Markov 

Corrected 

12/18/2024 4470.39 4532.630371 4532.009277 

12/19/2024 4508.73 4519.702148 4488.581543 

12/20/2024 4488.4 4514.669434 4509.183594 

12/21/2024 4492.84 4507.674316 4494.539551 

12/22/2024 4485.54 4502.96582 4495.548828 

12/23/2024 4479.95 4498.342773 4489.629883 

12/24/2024 4468.19 4493.814941 4484.618652 

12/25/2024 4516 4487.993652 4475.181152 

12/26/2024 4544.96 4492.527344 4506.530273 

12/27/2024 4576.6 4504.484863 4530.701172 

 

In the case of the MSM30 market, the LSTM network demonstrated reasonable forecasting 

precision, as shown by an RMSE of 42.89. Implementing Markov corrections to account for 

regime shifts led to an improved RMSE of 27.06, demonstrating the model’s ability to adjust to 

shifting market regimes and structural changes over time. 

The Tadawul market's LSTM model achieved an RMSE of 141.56, indicating a satisfactory level 

of predictive performance. Following the application of Markov-based adjustments, the RMSE 

improved to 102.84, confirming that recognizing efficiency state changes contributes positively 

to forecast precision.  

 

 

 

 

 

 

 

 

Model RMSE 

LSTM only 42.89465866 

LSTM + Markov 27.06209264 
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Table 16: TASI– LSTM Forecasting Analysis 

Date 
Actual 

Price 
LSTM 

Prediction 
Markov 

Corrected 

12/18/2024 11961.05 12058.83594 11972.7832 

12/19/2024 11892.44 12006.79492 11957.90234 

12/22/2024 11849.37 11957.91406 11900.73633 

12/23/2024 11948.79 11914.65625 11860.38477 

12/24/2024 11913.95 11920.66699 11937.73438 

12/25/2024 11892.32 11939.95215 11936.59277 

12/26/2024 11859.47 11952.56348 11928.74707 

12/29/2024 11892.75 11946.13965 11899.59375 

12/30/2024 12000.92 11940.48145 11913.78613 

12/31/2024 12036.5 11969.31445 11999.53418 

 

 

Table 17: QSI– LSTM Forecasting Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model RMSE 

LSTM only 141.5625368 

LSTM + Markov 102.8366755 

Date 
Actual 

Price 
LSTM 

Prediction 
Markov 

Corrected 

12/1/2024 10392.65 10409.83887 10414.84473 

12/2/2024 10391.15 10409.20313 10400.60938 

12/3/2024 10389.09 10408.61133 10399.58496 

12/4/2024 10337.59 10407.73633 10397.97559 

12/5/2024 10391.75 10396.4375 10361.36523 

12/8/2024 10361.46 10394.90234 10392.55762 

12/9/2024 10421.36 10389.44922 10372.72754 

12/10/2024 10496.32 10396.78125 10412.7373 

12/11/2024 10510.88 10421.9541 10471.72363 

12/12/2024 10528.65 10452.50977 10496.97266 

Model RMSE 

LSTM only 158.2606392 

LSTM + Markov 107.1603051 
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For the QSI index, the LSTM model produced a baseline RMSE of 158.26, capturing general 

market movements effectively. After incorporating Markov regime information, the adjusted 

RMSE reduced to 107.16, demonstrating enhanced model robustness. This improvement reflects 

the model’s ability to better account for structural shifts in efficiency and reinforces the 

importance of adaptive mechanisms in forecasting frameworks. 

 

Overall, the results across the four markets show that LSTM neural networks are capable of 

capturing and predicting market behavior patterns over multiple years. Although a full 2025 

forecast could not be realized due to resource constraints, the initial modeling demonstrates 

strong potential. Future work will focus on extending the forecast horizon and integrating 

Markov regime analysis into the LSTM predictions to provide dynamic investment 

recommendations, aligning with the evolving efficiency postulated by the AMH. 

 

4.5.2. LSTM + Markov + Trend Patterns: Full-Year Forecast for 2025  

In this second application, the LSTM model was trained on the entire 15-year dataset to forecast 

market performance for the full year of 2025. This time, the model did not receive any actual 

price data from 2025, making it a purely forward-looking forecast. To enhance prediction 

quality, the model architecture incorporated both Markov regime probabilities and trend pattern 

structures extracted from prior market cycles, allowing it to learn recurring behaviors and long-

term directional tendencies. 

This experiment was conducted on two selected markets: Qatar Stock Index (QSI) and Oman 

Stock Market (MSM30), both of which provided rich historical data with distinguishable cyclical 

characteristics. 

1. QSI Forecast Results 

The following graph presents the forecasted daily prices for the Qatar Stock Index (QSI) for the 

year 2025. 

 

Figure 21: Forecasted daily prices for the Qatar Stock Index (QSI) for the year 2025. 
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Figure 22: Forecasted vs. Actual Daily Prices for QSI – 2025 

The first graph shows the forecasted QSI daily prices for 2025, reflecting predicted trends and 

volatility based on the model’s output, while the second graph compares actual QSI stock prices 

with forecasted values from January to April 2025. It highlights deviations between predicted 

and actual data, helping assess the accuracy of the forecasting model. 

 

2. MSM30 Forecast Results 

 

The figure below displays the model’s forecast for the MSM30 index using the same hybrid 

setup. 

 

 
 

Figure 23: Forecasted daily prices for the MSM30 index for the year 2025. 
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Figure 24: Forecasted vs. Actual Daily Prices for QSI – 2025 

 

The first graph presents the forecasted daily prices of the MSM30 index for the full year 2025, 

generated by the LSTM model. The forecast reveals a steady downward trend from early January 

to December, suggesting either a reflection of macroeconomic expectations or a structural bias in 

the model. The smooth curve indicates that the model captures overall direction and long-term 

patterns, though it appears to underrepresent short-term volatility. The second graph compares 

the forecasted values with actual MSM30 prices from January to April 2025. While the model 

tracks the general downward movement, it consistently underestimates actual values. Although 

the directional trend is similar, the gap in magnitude highlights the need for further model 

refinement, possibly through the inclusion of additional inputs or updated training data. This 

comparison is important for assessing forecast reliability and guiding improvements in future 

applications. 

 

These two applications highlight the strengths and limitations of LSTM-based forecasting in 

financial market analysis. When combined with regime classification and validated against 

known data, the model demonstrates strong alignment with actual market behavior. However, in 

forward-looking scenarios without real-time input or exogenous context, its predictive 

performance declines. This underperformance stems from the model's overreliance on historical 

trend continuation in the absence of feedback loops, leading to unrealistic directional biases. The 

forecasts lacked response to mid-year shocks or nonlinear disruptions, such as unexpected policy 

shifts, inflation surges, or global economic spillovers, which typically influence adaptive investor 

behavior. Moreover, the model failed to incorporate macroeconomic signals, trading volume 

dynamics, or cross-asset interactions, elements essential for capturing regime changes under 

AMH. This underscores the importance of enhancing LSTM models with hybrid architectures 
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that incorporate external variables, dynamic retraining, or complementary analytical layers to 

improve adaptability and reliability in evolving market conditions. 

 

5. DISCUSSION, CONCLUSION & RECOMMENDATIONS 

5.1. Discussion 

The results of our multi-method empirical investigation offer robust support for the Adaptive 

Market Hypothesis (AMH), emphasizing the dynamic and evolving nature of financial market 

efficiency. The integration of statistical tests, regime-switching models, momentum profitability 

strategies, and machine learning forecasts allowed for a comprehensive understanding of how 

different markets behave under varying economic and informational conditions. These findings 

support the study's hypothesis (H₀ ), which posits a significant relationship between the dynamic 

shifts in market efficiency and the ability to generate abnormal returns. The observed regime 

transitions, time-dependent momentum returns, and LSTM-based predictive gains demonstrate 

that MENA markets exhibit adaptive behavior over time in ways consistent with AMH. 

 

The Markov Switching Models provided strong empirical evidence of non-linear shifts between 

efficient and inefficient regimes across the nine MENA-region markets. These transitions were 

not random but followed probabilistic patterns that could be quantified and tracked over time. 

Notably, markets such as Kuwait, Qatar, and Bahrain exhibited more frequent regime changes, 

suggesting higher sensitivity to external shocks or structural inefficiencies, while others like the 

UAE and Morocco showed greater persistence in efficiency. This regime-based evidence 

suggests a potential role for adaptive regulatory mechanisms in MENA markets, ones that adjust 

oversight intensity or disclosure requirements in response to detected market states, particularly 

during periods of inefficiency or volatility. 

 

Momentum strategy outcomes further supported AMH. In several markets, notably Jordan and 

Qatar, the 250-day momentum strategy outperformed Buy-and-Hold, indicating that price trends 

could be exploited within certain market phases. These temporary inefficiencies challenge the 

assumptions of the Efficient Market Hypothesis and align with AMH’s view that investor 

learning and behavioral biases often delay full price adjustment. Such patterns lend additional 

empirical weight to the study's hypothesis by showing that shifts in efficiency are not only 

detectable but also exploitable, reinforcing the view that markets adapt rather than behave 

randomly or uniformly. 

 

The integration of LSTM models into our forecasting framework introduced a forward-looking, 

nonlinear modeling component aimed at capturing evolving market dynamics. In the first 

application, we developed a hybrid framework that combined LSTM forecasting with Markov 

regime classification. The model was trained on the first 10 years of historical data and tested on 

the following 5 years, during which actual return data was available. This allowed us to directly 
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compare the forecasted values with real outcomes and apply regime-based adjustments using 

Markov probabilities. The resulting forecasts were not only statistically accurate but also 

behaviorally consistent with observed market movements, successfully capturing nonlinear 

patterns and shifts in efficiency states. However, the interpretability of the LSTM model remains 

limited due to its “black box” structure. While it captures temporal patterns, it does not readily 

reveal which factors drive predictions. This raises concerns about transparency for decision-

makers and constrains the model’s usefulness in policy settings. Additionally, the 

generalizability of the findings may be restricted, as the model's accuracy is conditioned on the 

availability of structured historical data and may degrade in more volatile or thinly traded 

markets not represented in the current dataset. 

 

In the second application, the model was trained on the entire 15-year dataset to forecast the full 

year of 2025. This time, the hybrid approach included both Markov regime probabilities and 

embedded trend pattern recognition based on the structure of previous market cycles. Although 

the model initially produced outputs that resembled actual market behavior in early 2025, its 

forecasts for the remaining months became overly simplistic and directionally biased. The model 

projected extended upward or downward trends without capturing mid-term corrections, 

volatility changes, or regime reversals. This behavior reflects a fundamental limitation of LSTM 

architectures when applied in isolation from real-time economic signals. Without continuous 

feedback or external data like economic news or policy changes, the model relies too much on 

past trends. As a result, it cannot adjust to sudden changes in the market. This makes forward-

looking forecasts less reliable and highlights the importance of using hybrid models that combine 

LSTM with economic, policy, or sentiment data to improve accuracy. 

 

These findings support the conclusion that while LSTM is a powerful tool for learning temporal 

dependencies, it requires further enhancement to perform reliably in adaptive financial settings. 

Our experience confirms that hybrid forecasting architectures are essential for capturing market 

behavior under the AMH framework, where efficiency is conditional and continuously evolving. 

These results align with recent studies that recommend combining LSTM with methods such as 

signal decomposition, attention mechanisms, or macroeconomic variable integration to improve 

flexibility and forecasting performance. 

5.2. Limitations of the Study 

While the results of this study are encouraging and offer valuable insights, several limitations 

must be acknowledged. Recognizing these limitations helps put the findings in context and 

provides direction for future improvements. However, there are some limitations as follows: (i) 

Limited Time Coverage; the data used in this research covers the period from 2010 to 2024. 

Although this includes important events like the COVID-19 pandemic and recent inflationary 

pressures, it may not reflect longer-term structural changes. For example, deeper financial 

reforms or slow-moving technological trends may influence efficiency in ways not captured 

here, (ii) Incomplete Evaluation of Future Forecasts; the LSTM model was used to forecast 
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market behavior for the full year of 2025. However, at the time of the study, complete 2025 data 

was not yet available. This means the model's accuracy for that period could not be fully tested, 

which limits the conclusions that can be drawn from those forecasts, (iii) Black-Box Nature of 

the LSTM Model; one of the key issues with LSTM models is that they do not clearly explain 

how decisions are made. Unlike traditional statistical models, it is difficult to interpret which 

variables had the most influence on predictions. This can be a problem for financial institutions 

or policymakers who need to understand and justify their decisions, (v) Missing External Factors 

in the Model; the model only used historical price data as input. Important external factors like 

central bank decisions, oil price shocks, or investor sentiment were not included. These events 

often play a significant role in real-world market behavior and could help improve the accuracy 

of the model, and (vi) Results Are Limited to MENA Markets; the findings of this study apply 

only to the MENA-region financial markets. These markets share certain characteristics, such as 

strong links to oil revenues or regional political developments. As such, the results may not be 

directly transferable to other regions without additional testing and model adjustments. 

5.3. Conclusion 

This research provides clear empirical evidence supporting the Adaptive Market Hypothesis, 

demonstrating that financial market efficiency is not constant but changes over time in response 

to varying conditions. By applying a combination of regime-based modeling, momentum 

performance strategies, and deep learning forecasting, the study was able to capture and interpret 

these adaptive dynamics effectively. These findings confirm the central hypothesis (H₀ ), which 

asserts a significant relationship between shifts in market efficiency and the potential to generate 

abnormal returns. The observed regime transitions and strategic profitability across different time 

horizons illustrate that MENA financial markets adapt in ways that depart from static efficiency 

models and align with the evolutionary principles of AMH. 

 

Markov Switching Models revealed that market behavior alternates between different regimes of 

efficiency, following identifiable probabilistic patterns. Momentum strategy outcomes showed 

that certain return trends could be exploited during inefficient phases, offering further support for 

the time-varying nature of efficiency proposed by AMH. These findings confirm that traditional 

assumptions of market equilibrium do not always hold in real-world settings. This has 

implications for both financial institutions and regulatory authorities in the MENA region, who 

may benefit from incorporating regime-based indicators into their market oversight frameworks. 

Adaptive supervision, especially during phases of volatility or behavioral bias, could improve 

resilience, transparency, and investor protection in these evolving markets. 

 

The integration of LSTM forecasting added a predictive layer to the analysis, illustrating both the 

strengths and weaknesses of deep learning in financial modeling. When supported by observed 

data and adjusted using regime probabilities, the LSTM model produced reliable forecasts. 

However, when used without feedback or contextual inputs, its predictions lost precision, 

underscoring the need for hybrid systems that combine machine learning with economic logic. 
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This study not only validates AMH through multiple empirical lenses but also offers a practical 

direction for future applications. The modeling framework developed here can be expanded into 

a decision-support system that helps investors anticipate market shifts and adjust strategies 

accordingly. With continued development and the inclusion of real-time variables, such systems 

could contribute meaningfully to adaptive portfolio management. 

5.4. Recommendations and Future Research  

Based on the empirical confirmation of the Adaptive Market Hypothesis (AMH) across nine 

MENA-region markets, and the performance of the hybrid modeling approach that combines 

Markov regime-switching and LSTM forecasting, the following practical recommendations are 

proposed. These suggestions aim to improve decision-making among investors, institutions, and 

regulators in environments where market efficiency changes over time. 

 

 Create Investment Tools Based on Market Efficiency States; financial institutions are 

encouraged to develop digital platforms or systems that use the combination of LSTM 

forecasts and Markov regime analysis. These tools could help investors make better 

decisions by identifying whether the market is likely to be in an efficient or inefficient 

state. This approach would support portfolio strategies that respond to changing market 

behavior. 

 Use Regime Forecasting in Portfolio Strategy, investors should consider adjusting their 

strategies depending on the expected regime. Long-term investments are more suitable in 

markets that are forecasted to remain efficient, while short-term or tactical strategies may 

be more effective during periods of predicted inefficiency. This allows portfolios to be 

more flexible and better adapted to current market conditions. 

 Apply Cross-Market Comparisons to Allocate Capital More Wisely, investors and fund 

managers should not only look at individual market trends but also compare multiple 

MENA markets. By identifying which markets are likely to become more efficient or 

inefficient, capital can be shifted accordingly to take advantage of opportunities or reduce 

exposure to risk. 

 Use Regime Information in Financial Supervision; regulators can benefit from 

monitoring regime shifts in real time. If a market begins to show signs of moving toward 

inefficiency or instability, regulators can consider issuing warnings, adjusting policy 

tools, or taking temporary measures to reduce potential disruptions. Early identification 

of regime changes could also support stronger market oversight. 

 Educate Investors on Market Adaptability and Risk Behavior; since market behavior does 

not stay constant over time, educational programs should be updated to include the idea 

that market efficiency can shift. Teaching both retail and institutional investors about 

AMH, momentum strategies, and regime changes can reduce panic-driven reactions and 

improve decision-making, especially during periods of uncertainty or volatility. 
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However, directions for future research aims to build on the current findings and address the 

limitations discussed above, the following future research directions are proposed. These ideas 

aim to improve both the model and its practical use in academic and financial environments. 

 Use More Advanced Forecasting Models; future studies could explore the use of more 

advanced models, such as stacked LSTM layers, GRU (Gated Recurrent Units), or 

transformer-based architectures. These models may be able to capture deeper 

relationships in the data and improve forecasting performance, especially in highly 

volatile markets. 

 Add External and Behavioral Variables to the Model, including external data like interest 

rates, inflation figures, policy news, or even social media sentiment could help the model 

better reflect actual market behavior. This would allow forecasts to respond to real-world 

conditions, not just past price patterns. 

 Test the Model on Other Asset Types, researchers may expand the current model to apply 

it to other asset classes, such as commodities, sector indices (e.g., banking or energy 

stocks), or cryptocurrencies. These markets often behave differently from traditional 

stock indices and may show different patterns of efficiency. 

 Develop a Real-Time Regime Alert System, one of the most useful future applications 

would be a real-time tool that continuously monitors market regimes and sends alerts 

when a change is likely to occur. This could help investors take action more quickly and 

also assist regulators in preparing for market disruptions. 

 Improve Model Transparency and Explainability, there is a growing need to make 

complex models more transparent. Future work should focus on integrating explainable 

AI techniques (e.g., SHAP values or attention mechanisms) into forecasting systems. 

This would make it easier for decision-makers to understand why the model makes 

certain predictions and to trust its recommendations. 
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Appendices – Formula References 

Appendix A: Statistical Test Equations 

1. Jarque-Bera Test: 

𝑱𝑩 =
𝒏

𝟔
(𝑺𝟐 +

(𝑲 − 𝟑)𝟐

𝟒
) 

Where: 

 n : number of observations 
 S : skewness 

 K : kurtosis 

 
2. Augmented Dickey-Fuller (ADF) Test: 

𝜟𝒚𝒕 = 𝜶 + 𝜷𝒕 + 𝜸𝒚𝒕−𝟏 + ∑ 𝜹𝒊 𝜟𝒚𝒕−𝒊

𝒑

𝒊=𝟏

+ 𝜺𝒕 

Where: 

 𝜟𝒚𝒕 = 𝒚𝒕 − 𝒚𝒕−𝟏 : the first difference 

 𝜶 : constant 

 𝜷𝒕 : trend component 

 𝜸 : coefficient testing for unit root (if 𝜸 = 𝟎, unit root exists) 

 𝜹𝒊 : lag coefficients to address autocorrelation 

 𝜺𝒕 : error term 
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3. Phillips-Perron (PP) Test: 

Similar to ADF but adjusts for serial correlation and heteroskedasticity using non-parametric 
techniques. 

Appendix B: Markov Switching Model Formulation 

1. Return Equation: 

𝒓𝒕 = 𝝁𝑺𝒕
+ 𝜺𝒕, 𝜺𝒕 ∼ 𝑵(𝟎, 𝝈𝟐

𝑺𝒕
) 

Where: 

 𝒓𝒕 is the return at time 𝒕 

 𝑺𝒕 ∈ {𝟎, 𝟏} is the unobserved (hidden) state variable representing the regime 

 𝝁𝑺𝒕
 is the mean return in regime 𝑺𝒕 

 𝝈𝟐
𝑺𝒕

 is the variance of returns in regime 𝑺𝒕 

 𝜺𝒕 is a normally distributed error term with regime-dependent variance 

 

2. Transition Probability Matrix: 

    

𝑃 = [
𝑃00 𝑃01

𝑃10 𝑃11
] 

Where: 

 𝑷𝒊𝒋 = ℙ(𝑺𝒕 = 𝒋 | 𝑺𝒕 − 𝟏 = 𝒊) 

 𝑷𝟎𝟎 : probability of staying in Regime 0 (efficient) 

 𝑷𝟏𝟏 : probability of staying in Regime 1 (inefficient) 

 𝑷𝟎𝟏 = 𝟏 − 𝑷𝟎𝟎: probability of switching from efficient to inefficient 

 𝑷𝟏𝟎 = 𝟏 − 𝑷𝟏𝟏: probability of switching from inefficient to efficient 

Appendix C: Momentum Strategy Formulas 

1. Signal Generation: 

𝑺𝒊𝒈𝒏𝒂𝒍𝒕 = {
  𝟏, 𝐢𝐟 𝑷𝒕 > 𝑷𝒕−𝒏

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
      𝐰𝐢𝐭𝐡 𝒏 = 𝟐𝟓𝟎, 𝟓𝟎𝟎 

Where: 

 𝑷𝒕 : current closing price 

 𝑷𝒕−𝒏 : closing price n days ago 

 𝑺𝒊𝒈𝒏𝒂𝒍𝒕 : trading position at time 𝒕 (1 = invested, 0 = not invested) 
2. Strategy Return: 

𝑹𝒕
𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 = 𝑺𝒊𝒈𝒏𝒂𝒍𝒕 . 𝒓𝒕 

Where: 

 𝒓𝒕 : log return at time 𝒕 

 𝑹𝒕
𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎  : strategy return at time 𝒕 

 

3. Cumulative Return: 

    

𝑪𝑹𝒕 = ∏(𝟏 + 𝑹𝒊
𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎) − 𝟏

𝒕

𝒊=𝟏

 

Where: 

 𝑪𝑹𝒕 : cumulative return of the momentum strategy 

 

4. Buy-and-Hold Return: 
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𝑪𝑹𝒕
𝑩𝑯 = ∏(𝟏 + 𝒓𝒊) − 𝟏

𝒕

𝒊=𝟏

 

Where: 

 𝑪𝑹𝒕
𝑩𝑯 : cumulative return of a passive investment (holding the asset) 

 

Appendix D: LSTM Forecasting Model Details 

1. Input: Sequences of past log returns: 

𝑿𝒕 = [𝒓𝒕−𝒌+𝟏, 𝒓𝒕−𝒌+𝟐, … , 𝒓𝒕] 
where 𝒌 = 𝟔𝟎 days (look-back window), and 𝒓𝒕 is the log return at time 𝒕. 
2. Prediction: 

�̂�𝒕+𝟏 = 𝒇𝑳𝑺𝑻𝑴(𝑿𝒕) 

 

3. Loss Function: Mean Squared Error (MSE): 

𝐌𝐒𝐄 =
𝟏

𝒏
∑(𝒓𝒕 − �̂�𝒕)𝟐

𝒏

𝒕−𝟏

 

4. Evaluation Metrics: 
o Root Mean Squared Error (RMSE): 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝒓𝒕 − �̂�𝒕)𝟐

𝒏

𝒕−𝟏

 

5. Regime Adjustment: 

�̂�𝒕
𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

= �̂�𝒕 ⋅ ℙ(𝑺𝒕 = 𝟎) 

 

 


